

Revisiones Aguijón 4.0 y 4.1:

Precauciones al utilizar los módulos de expansión

Propósito General:

Prevenir errores al utilizar los módulos de expansión al utilizar hardware externo, ya que estos van conectados directamente al micro controlador y por lo tanto no cuentan con protección si se llega a generar una sobre carga. Ésta guía va enfocada para prevenir una conexión mala y no dañar el módulo de expansión.

Figura 1.1 (Aguijón 4.1)

Figura 1.2 (Aguijón 4.0)

Figura 1.3

Diagrama de módulos de expansión:

Figura 1.5 (Aguijón 4.1)

Módulos:

Figura 1.6 (Aguijón 4.0)

Figura 1.7 (Aguijón 4.1)

Se deben tomar ciertas medidas preventivas para utilizar los pines del 3 – 11 ya sea como entrada o salida.

Configuración de entradas.- Cuando hayamos configurado cualquier de los pines ya mencionados como entradas, se debe se tener cuidado al momento de alimentar con voltaje, el voltaje no debe sobrepasar 3.3 voltios, ya que en caso contrario se podrá dañar la entrada del módulo de expansión que estemos alimentando.

Configuración de salidas.- Al momento que hayamos seleccionado uno o varios pines como salidas se tiene que primero checar que nuestro circuito externo este bien conectado y no vaya a haber algún riesgo que ocurra algún corto. Después verificar la cantidad de amperaje que nuestro circuito externo necesita ya que las salidas del micro controlador solo nos brindan la capacidad de 25 mA sinked o sourced. Si sobre pasamos esa cantidad de amperaje podremos dañar nuestro módulo de expansión.

Ruta para configuración de entradas/salidas:

Abrimos nuestro archivo:

Figura 1.8

Abrimos la pestaña de "Header Files" y de "[VD] HammerHead" y abriremos "BSP.h"

Figura 1.9

En la línea 313# encontraremos todas las declaraciones para nuestros módulos de expansión

312		
313	/*Expansion port \$1 (J5)*/	
314	<pre>#define EXP_PORT1_PIN2_LAT</pre>	LATDbits.LATD9
315	<pre>#define EXP_PORT1_PIN2_PORT</pre>	PORTDbits.RD9
316	<pre>#define EXP_PORT1_PIN2_TRIS</pre>	TRISDbits.TRISD9
317	<pre>#define EXP_PORT1_PIN2_RPOUT</pre>	RPOR2bits.RP4R
318	<pre>#define EXP_PORT1_PIN2_RPIN</pre>	(4)
319		
320	<pre>#define EXP_PORT1_PIN3_LAT</pre>	LATDbits.LATD10
321	<pre>#define EXP_PORT1_PIN3_PORT</pre>	PORTDbits.RD10
322	<pre>#define EXP_PORT1_PIN3_TRIS</pre>	TRISDbits.TRISD10
323	<pre>#define EXP_PORT1_PIN3_RPOUT</pre>	RPOR1bits.RP3R
324	<pre>#define EXP_PORT1_PIN3_RPIN</pre>	(3)
325		
326	<pre>#define EXP_PORT1_PIN4_LAT</pre>	LATDbits.LATD11
327	<pre>#define EXP_PORT1_PIN4_PORT</pre>	PORTDbits.RD11
328	<pre>#define EXP_PORT1_PIN4_TRIS</pre>	TRISDbits.TRISD11
329	<pre>#define EXP_PORT1_PIN4_RPOUT</pre>	RPOR6bits.RP12R
330	<pre>#define EXP_PORT1_PIN4_RPIN</pre>	(12)
331		
332	<pre>#define EXP_PORT1_PIN5_LAT</pre>	LATDbits.LATD8
333	<pre>#define EXP_PORT1_PIN5_PORT</pre>	PORTDbits.RD8
334	<pre>#define EXP_PORT1_PIN5_TRIS</pre>	TRISDbits.TRISD8
335	<pre>#define EXP_PORT1_PIN5_RPOUT</pre>	RPOR1bits.RP2R
336	<pre>#define EXP_PORT1_PIN5_RPIN</pre>	(2)
337		
338	<pre>#define EXP_PORT1_PIN6_LAT</pre>	LATFbits.LATF8
339	<pre>#define EXP_PORT1_PIN6_PORT</pre>	PORTFbits.RF8
340	<pre>#define EXP_PORT1_PIN6_TRIS</pre>	TRISFbits.TRISF8
341	<pre>#define EXP_PORT1_PIN6_RPOUT</pre>	RPOR7bits.RP15R
342	<pre>#define EXP_PORT1_PIN6_RPIN</pre>	(15)
242		

Figura 2.0

Configurar entradas y salidas de módulos de expansión:

En este caso configuraremos en una revisión 4.0, si nuestra revisión es 4.1 para cambiar las librerías para los módulos de expansión solo seleccionamos la revisión Aguijón 4.1 como se muestra en la figura 2.1:

v1.85 - MSD demo : Aguijon4.1-XC16					
Navigate Source Refactor Run Debug Team Tools Window Help					
Aguijon4.1-XC16					
Aguijon4-XC16 Aguijon3-XC16	P				
Aguijon 4. 1-XC 16					
Customize	1 T V V V C V V V				
rries	33 #THOTAGE LOD.II				
tant Files	<pre>34 #include "outputs.h"</pre>				
/ Files	<pre>35 #include "realtime.h"</pre>				
Files	36 #include "RS232.h"				
t Files	37 - #include "timers.h"				

Figura 2.1

Configurar como salida. Configurar el registro del PIN que deseamos utilizar como salida, para esto, le daremos un valor de "o" al registro (Línea #91). Después, para cambiar su estado lógico a "TRUE", se configura de como se muestra en la línea #95, y para cambiarlo a "FALSE" se configura como se muestra en la línea #97.

89		
90	<pre>/* Definitions */</pre>	
91	EXP_PORT1_PIN10_TRIS = 0;	<pre>// Configure the register of PIN10 as Output</pre>
92		
93	for(;;){	
94		
95	<pre>EXP_PORT1_PIN10_LAT = 1;</pre>	// Set PIN10 value as 1
96	delayms(500);	// Delay time
97	EXP_PORT1_PIN10_LAT = 0;	// Set PIN10 value as 0
98	delayms(500);	// Delay time
99		
100		
101	}	

Figura 2.2

Configurar como entrada.- Configurar el registro del PIN que deseamos utilizar como entrada, para esto, le daremos un valor "1" al registro (Línea #91). Después, le daremos una condición de que instrucción ejecute cuando su valor cambie, en este caso utilizamos otro PIN de salida que se activara cuando el PIN declarado como entrada, cambie de estado lógico. En la línea #96 se puede observar la condición de cambio de estado lógico.

Figura 2.2

Configuración de lectura.- Configurar el PIN de salida que deseamos leer, después se asignara la condición de lectura que hará nuestro programa al ejecutar dicha condición. En este caso la lectura se basara sobre la salida del PIN 11, si esta condición se cumple cambiara de estado lógico el PIN 12.

89	
90	/* Definitions */
91	EXP_FORT1_FIN10_TRIS = 1; // Configure the register of FIN10 as Digital Input
92	EXP_FORT1_FIN11_TRIS = 0; // Configure the register of FIN11 as Digital Output
93	<pre>EXP_PORT1_PIN12_TRIS = 0; // Configure the register OF PIN12 as Digital Output</pre>
94	
95	for(;;){
96	
97	if(EXP_PORT1_PIN10_PORT == TRUE){
98	EXP_PORT1_PIN11_LAT = 1;
99	
100	if (EXP_PORT1_PIN11_PORT = 1) { // Read Output Condition
101	EXP_PORT1_PIN12_LAT = 1;
102	}
103	else{
104	EXP_PORT1_PIN12_LAT = 0;
105	}
106	}
107	else
108	{ line line line line line line line line
109	EXP_PORT1_PIN11_LAT = 0;
110	}
111	
112	

Figura 2.3